Normative vs. Positive Models: Choice under Uncertainty

E. Maskin

Newton Institute, Cambridge
May 13, 2015
• Modern theory of choice dates from von Neumann and Morgenstern (1944)
• Modern theory of choice dates from von Neumann and Morgenstern (1944)
• precursors date from 18th century (D. Bernoulli)
• In von Neumann-Morgenstern model, choices made according to expected utility (EU) maximization
In von Neumann-Morgenstern model, choices made according to *expected utility (EU)* maximization

\[u : X \rightarrow \mathbb{R} \]

options
In von Neumann-Morgenstern model, choices made according to *expected utility (EU)* maximization

$$u : X \rightarrow \mathbb{R}$$

- choose option that maximizes $\sum_{x \in X} p_x u(x)$, $p_x = \text{prob of } x$
• In von Neumann-Morgenstern model, choices made according to *expected utility (EU)* maximization

\[u : X \to \mathbb{R} \]

\[\text{options} \]

– choose option that maximizes \[\sum_{x \in X} p_x u(x) \quad p_x = \text{prob of } x \]

• justification is *axiomatic*
In von Neumann-Morgenstern model, choices made according to *expected utility (EU)* maximization

\[u : X \rightarrow \mathbb{R} \]

- choose option that maximizes \(\sum_{x \in X} p_x u(x) \) \(p_x = \text{prob of } x \)

justification is axiomatic

- rather than just *assuming* EU maximization, vN-M showed that if decision maker (DM) satisfies basic, rather compelling assumptions, must act *as though* maximizing EU
• One virtue of axiomatic approach:
• One virtue of axiomatic approach:
 – can understand complicated (and seemingly arbitrary) phenomenon (e.g., EU maximization) as implication of simple and less-arbitrary assumptions
vN-M model both normative and positive
vN-M model both normative and positive

• started as *normative*
vN-M model both normative and positive

• started as *normative*
 – how *should* rational DM behave under conditions of uncertainty
vN-M model both normative and positive

• started as *normative*
 – how *should* rational DM behave under conditions of uncertainty

• turned out to be *positive* too
vN-M model both normative and positive

• started as *normative*
 – how *should* rational DM behave under conditions of uncertainty

• turned out to be *positive* too
 – explained much investment behavior
vN-M model both normative and positive

• started as *normative*
 – how *should* rational DM behave under conditions of uncertainty

• turned out to be *positive* too
 – explained much investment behavior
 – explained insurance markets well
• Of course, not all people are rational (nobody fully rational)
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• but if mistakes are *random*
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• but if mistakes are random
 – may wash out in aggregate
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• but if mistakes are random
 – may wash out in aggregate
 – so rational model works well
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• but if mistakes are random
 – may wash out in aggregate
 – so rational model works well
• Unfortunately, some anomalies discovered
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• but if mistakes are *random*
 – may wash out in *aggregate*
 – so rational model works well
• Unfortunately, some *anomalies* discovered
 – situations where theory fails systematically
• Of course, not all people are rational (nobody fully rational)
 – and even fairly rational people make mistakes
• but if mistakes are *random*
 – may wash out in *aggregate*
 – so rational model works well
• Unfortunately, some *anomalies* discovered
 – situations where theory fails systematically
 – will discuss paradoxes of Allais, Ellsberg, Kahneman-Tversky
vN-M model
\(vN-M \text{ model} \)

- possible outcomes \(X = \{ x_1, \ldots, x_n \} \)
νN-M model

• possible outcomes \(X = \{x_1, \ldots, x_n\} \)
 – today, think of outcome as monetary
\(\nu N-M \) model

- possible outcomes \(X = \{ x_1, \ldots, x_n \} \)

 - today, think of outcome as \textit{monetary}

 - finite number of possibilities
\emph{vN-M model}

- possible outcomes \(X = \{x_1, \ldots, x_n\} \)
 - today, think of outcome as \textit{monetary}
 - finite number of possibilities

- lottery: \textit{probability distribution} over outcomes
\(vN-M\) model

- possible outcomes \(X = \{x_1, \ldots, x_n\}\)
 - today, think of outcome as *monetary*
 - finite number of possibilities

- lottery: *probability distribution* over outcomes
 - \(\ell = \{p_1, \ldots, p_n\}\), \(p_i = \text{prob of } x_i\)
vN-M model

• possible outcomes \(X = \{x_1, \ldots, x_n\} \)

 – today, think of outcome as monetary
 – finite number of possibilities

• lottery: probability distribution over outcomes

 – \(\ell = \{p_1, \ldots, p_n\} \), \(p_i = \text{prob of } x_i \)

• DM chooses among lotteries
• DM has preferences over lotteries
• DM has preferences over lotteries
 \(\ell \succeq \ell' \)
 DM (weakly) prefers \(\ell \) to \(\ell' \)
• DM has preferences over lotteries

\[\ell \succeq \ell' \quad \text{DM (weakly) prefers } \ell \text{ to } \ell' \]

\[\ell \succ \ell' \quad \text{DM strictly prefers } \ell \text{ to } \ell' \]
• DM has preferences over lotteries
 \(\ell \succeq \ell' \) DM (weakly) prefers \(\ell \) to \(\ell' \)
 \(\ell \succ \ell' \) DM strictly prefers \(\ell \) to \(\ell' \)
 \(\ell \sim \ell' \) DM indifferent between \(\ell \) and \(\ell' \)
• DM has preferences over lotteries
 \(l \succeq l' \) DM (weakly) prefers \(l \) to \(l' \)
 \(l > l' \) DM strictly prefers \(l \) to \(l' \)
 \(l \sim l' \) DM indifferent between \(l \) and \(l' \)
• vN-M imposed *axioms* on preferences
• DM has preferences over lotteries
 \[\ell \succeq \ell' \quad \text{DM (weakly) prefers } \ell \text{ to } \ell' \]
 \[\ell \succ \ell' \quad \text{DM strictly prefers } \ell \text{ to } \ell' \]
 \[\ell \sim \ell' \quad \text{DM indifferent between } \ell \text{ and } \ell' \]

• vN-M imposed *axioms* on preferences

(1) \[\succeq \] satisfies
• DM has preferences over lotteries
 \(l \succeq l' \) \(\) DM (weakly) prefers \(l \) to \(l' \)
 \(l > l' \) DM strictly prefers \(l \) to \(l' \)
 \(l \sim l' \) DM indifferent between \(l \) and \(l' \)

• vN-M imposed *axioms* on preferences

(1) \(\succeq \) satisfies
 - *reflexivity*: \(l \succeq l \)
• DM has preferences over lotteries
 \(l \succeq l' \quad \text{DM (weakly) prefers } l \text{ to } l' \)
 \(l \succ l' \quad \text{DM strictly prefers } l \text{ to } l' \)
 \(l \sim l' \quad \text{DM indifferent between } l \text{ and } l' \)

• vN-M imposed \textit{axioms} on preferences

(1) \succeq \text{ satisfies}
 - \textit{reflexivity}: \(l \succeq l \)
 - \textit{completeness}: for any \(l \) and \(l' \), either \(l \succeq l' \) or \(l' \succeq l \)
• DM has preferences over lotteries
 \(\ell \succeq \ell' \) DM (weakly) prefers \(\ell \) to \(\ell' \)
 \(\ell \succ \ell' \) DM strictly prefers \(\ell \) to \(\ell' \)
 \(\ell \sim \ell' \) DM indifferent between \(\ell \) and \(\ell' \)

• vN-M imposed *axioms* on preferences

(1) \(\succeq \) satisfies
 - *reflexivity*: \(\ell \succeq \ell \)
 - *completeness*: for any \(\ell \) and \(\ell' \), either \(\ell \succeq \ell' \) or \(\ell' \succeq \ell \)
 - *transitivity*: if \(\ell \succeq \ell' \) and \(\ell' \succeq \ell'' \), then \(\ell \succeq \ell'' \)
• DM has preferences over lotteries
 \(l \succeq l' \) DM (weakly) prefers \(l \) to \(l' \)
 \(l \succ l' \) DM strictly prefers \(l \) to \(l' \)
 \(l \sim l' \) DM indifferent between \(l \) and \(l' \)

• vN-M imposed axioms on preferences

(1) \(\succeq \) satisfies
 - reflexivity: \(l \succeq l \)
 - completeness: for any \(l \) and \(l' \), either \(l \succeq l' \) or \(l' \succeq l \)
 - transitivity: if \(l \succeq l' \) and \(l' \succeq l'' \), then \(l \succeq l'' \)

• from (1), can assume \(x_1 \succ x_2 \succ \ldots \succ x_n \) (labeling)
(2) \simeq satisfies continuity:
(2) \(\preceq \) satisfies \textit{continuity}:

- for any \(\ell \) there exists probability \(p \) such that

\[
\ell \sim \begin{cases}
p \quad & x_1 \\
1-p \quad & x_n
\end{cases}
\]
(2) \(\prec\) satisfies \textit{continuity}:

- for any \(\ell\) there exists probability \(p\) such that

\[
\ell \sim \begin{cases}
\text{p} & x_1 \\
1 - p & x_n
\end{cases}
\]

(3) \(\succ\) satisfies \textit{monotonicity}:

\[
\begin{cases}
p & x_1 \\
1 - p & x_n
\end{cases} \sim \begin{cases}
p' & x_1 \\
1 - p' & x_n
\end{cases}
\]
(2) \(\succeq\) satisfies continuity:

- for any \(\ell\) there exists probability \(p\) such that

\[
\ell \sim \begin{cases}
p & x_1 \\
1-p & x_n
\end{cases}
\]

(3) \(\succeq\) satisfies monotonicity:

\[
\begin{cases}
p & x_1 \\
1-p & x_n
\end{cases} \succeq \begin{cases}
p' & x_1 \\
1-p' & x_n
\end{cases}
\]

if and only if \(p \geq p'\)
(4) \sim satisfies *independence*:
(4) \(\succeq\) satisfies *independence*:
 - most controversial axiom
(4) \(\succcurlyeq \) satisfies *independence*:

- most controversial axiom

- suppose \(\ell \succcurlyeq \ell' \)
(4) \(\succeq \) satisfies *independence*:

- most controversial axiom

- suppose \(\ell \succeq \ell' \)

- then for all \(p \) and \(\hat{\ell} \)
(4) \(\succeq \) satisfies *independence*:
- most controversial axiom

- suppose \(\ell \succeq \ell' \)
- then for all \(p \) and \(\hat{\ell} \)

- only difference between two lotteries is:
 - on right side, \(\ell \) replaced by \(\ell' \)
Proposition (vN-M): if \(\succsim \) satisfies axioms (1) - (4) then
Proposition (vN-M): if \(\succsim \) satisfies axioms (1) - (4) then there exists \(u: \{x_1, \ldots, x_n\} \to \mathbb{R} \) such that
Proposition (vN-M): if \succeq satisfies axioms (1) - (4) then there exists $u: \{x_1, \ldots, x_n\} \to \mathbb{R}$ such that

- $\ell = \{p_1, \ldots, p_n\} \succeq \ell' = \{p'_1, \ldots, p'_n\}$
Proposition (vN-M): if \(\succeq \) satisfies axioms (1) - (4) then there exists \(u: \{x_1, \ldots, x_n\} \rightarrow \mathbb{R} \) such that

- \(\ell = \{p_1, \ldots, p_n\} \succeq \ell' = \{p'_1, \ldots, p'_n\} \)

if and only if
Proposition (vN-M): if \(\succcurlyeq \) satisfies axioms (1) - (4) then there exists \(u: \{x_1, \ldots, x_n\} \rightarrow \mathbb{R} \) such that

- \(\ell = \{p_1, \ldots, p_n\} \succcurlyeq \ell' = \{p_1', \ldots, p_n'\} \)

if and only if

\[
\sum p_i u(x_i) \geq \sum p_i' u(x_i)
\]
Proposition (vN-M): if \succeq satisfies axioms (1) - (4) then there exists $u: \{x_1, \ldots, x_n\} \rightarrow \mathbb{R}$ such that

- $\ell=\{p_1, \ldots, p_n\} \succeq \ell'=\{p'_1, \ldots, p'_n\}$

if and only if

$$\sum p_i u(x_i) \geq \sum p'_i u(x_i)$$

- so DM chooses lottery that maximizes EU
Proof:

- let $u(x_1) = 1, \ u(x_n) = 0$
Proof:

- let $u(x_1) = 1$, $u(x_n) = 0$
- from continuity, for every x_i, there exists probability $u(x_i)$ such that
\{ p_1, \ldots, p_n \} \sim \{ p'_1, \ldots, p'_n \}
\{p_1, \ldots, p_n\} \sim \{p'_1, \ldots, p'_n\}

\leftrightarrow

\text{independence}
\[\{ p_1, \ldots, p_n \} \sim \{ p'_1, \ldots, p'_n \} \]

\[\leftrightarrow\]

\[\sum p_i u(x_i) \leftrightarrow x_i \sim \sum p'_i u(x_i) \leftrightarrow x'_i\]

\[\leftrightarrow\]

\[1 - \sum p_i u(x_i) \leftrightarrow x_n \sim 1 - \sum p'_i u(x_i) \leftrightarrow x'_n\]

independence

addition and multiplication
\[\{ p_1, \ldots, p_n \} \sim \{ p'_1, \ldots, p'_n \} \]

\[x \leftrightarrow \]

\[\sum_{i=1}^n p_i u(x_i) \geq \sum_{i=1}^n p'_i u(x_i) \]

\[\leftrightarrow \]

\[\text{independence} \]

\[\leftrightarrow \]

\[\text{addition and multiplication} \]

\[\leftrightarrow \]

\[\text{monotonicity} \]
• DM is *risk averse* if
• DM is *risk averse* if
 - prefers \(px_i + (1 - p)x_j \)
 to
 lottery with
 probability \(p \) of \(x_i \)
 probability \(1 - p \) of \(x_j \)
• DM is *risk averse* if
 - prefers \(px_i + (1 - p)x_j \)
 to
 lottery with
 probability \(p \) of \(x_i \)
 probability \(1 - p \) of \(x_j \)
 - i.e., prefers “sure thing” to lottery
• DM is risk averse if
 - prefers \(px_i + (1 - p)x_j \)
 to
 lottery with
 probability \(p \) of \(x_i \)
 probability \(1 - p \) of \(x_j \)
 - i.e., prefers “sure thing” to lottery
• risk aversion explains insurance market
• DM is risk averse if
 - prefers $px_i + (1 - p)x_j$
 to
 lottery with
 probability p of x_i
 probability $1 - p$ of x_j
 - i.e., prefers “sure thing” to lottery
• risk aversion explains insurance market
 - small probability of big loss
• DM is risk averse if
 - prefers $px_i + (1 - p)x_j$
 to
 lottery with
 probability p of x_i
 probability $1 - p$ of x_j
 - i.e., prefers “sure thing” to lottery
• risk aversion explains insurance market
 - small probability of big loss
 - e.g., there’s a small chance your house may burn down
• DM is risk averse if
 - prefers $px_i + (1 - p)x_j$

 to
 lottery with

 probability p of x_i

 probability $1 - p$ of x_j

 - i.e., prefers “sure thing” to lottery

• risk aversion explains insurance market
 - small probability of big loss

 - e.g., there’s a small chance your house may burn down

 - you are willing to pay substantial amount (insurance premium)

 to replace lottery with its expected value
DM is *risk averse* if
- prefers \(px_i + (1 - p)x_j \)
 to
lottery with
 probability \(p \) of \(x_i \)
 probability \(1 - p \) of \(x_j \)
- i.e., prefers “sure thing” to lottery

- risk aversion explains *insurance market*
 - small probability of big loss
 - e.g., there’s a small chance your house may burn down
 - you are willing to pay substantial amount (insurance premium)
 to replace lottery with its expected value

- risk aversion \(\leftrightarrow \) utility function \(u \) concave
If monetary outcomes are unboundedly large
If monetary outcomes are unboundedly large
- then \(u \) must be concave eventually
• If monetary outcomes are unboundedly large
 - then \(u \) must be concave eventually
• to see this, consider the following lottery:
If monetary outcomes are unboundedly large
- then u must be concave eventually

To see this, consider the following lottery:
- probability $1/2$ of £1
• If monetary outcomes are unboundedly large
 - then \(u \) must be concave eventually
• to see this, consider the following lottery:
 - probability \(1/2 \) of £1
 - probability \(1/4 \) of £2
If monetary outcomes are unboundedly large
- then \(u \) must be concave eventually

to see this, consider the following lottery:
- probability \(1/2 \) of £1
- probability \(1/4 \) of £2
- probability \(1/8 \) of £4
• If monetary outcomes are unboundedly large
 - then \(u \) must be concave eventually
• to see this, consider the following lottery:
 - probability \(1/2 \) of £1
 - probability \(1/4 \) of £2
 - probability \(1/8 \) of £4
 - probability \(1/2^{n+1} \) of £2\(^n\)
• If monetary outcomes are unboundedly large
 - then \(u \) must be concave eventually
• to see this, consider the following lottery:
 - probability \(1/2 \) of £1
 - probability \(1/4 \) of £2
 - probability \(1/8 \) of £4
 - probability \(1/2^{n+1} \) of £\(2^n \)
• How much would DM be willing to pay for lottery?
• If monetary outcomes are unboundedly large
 - then \(u \) must be concave eventually
• to see this, consider the following lottery:
 - probability \(\frac{1}{2} \) of £1
 - probability \(\frac{1}{4} \) of £2
 - probability \(\frac{1}{8} \) of £4
 - probability \(\frac{1}{2^{n+1}} \) of £\(2^n \)
• How much would DM be willing to pay for lottery?
 - expected value:
 \[
 \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \ldots
 = \infty!
 \]
• If monetary outcomes are unboundedly large
 - then u must be concave eventually
• to see this, consider the following lottery:
 - probability $1/2$ of £1
 - probability $1/4$ of £2
 - probability $1/8$ of £4
 - probability $1/2^{n+1}$ of £2^n
• How much would DM be willing to pay for lottery?
 - expected value:
 \[
 \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \ldots
 \]
 \[= \infty!
 \]
 - but no one would be willing to pay ∞
If monetary outcomes are unboundedly large, then \(u \) must be concave eventually.

to see this, consider the following lottery:

- probability \(1/2\) of £1
- probability \(1/4\) of £2
- probability \(1/8\) of £4
- probability \(1/2^{n+1}\) of £2\(^n\)

How much would DM be willing to pay for lottery?

- expected value:

\[
\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \ldots
\]

= \(\infty\)!

- but no one would be willing to pay \(\infty\)
- so DM’s utility function must be concave eventually
• Example called St. Petersburg Paradox
• Example called St. Petersburg Paradox
• resolved by Bernoulli (1738)
• vN-M model applies very widely
• vN-M model applies very widely
• but some well-documented violations
• vN-M model applies very widely
• but some well-documented violations
• one pointed out by Allais (1953)
• Suppose DM offered choice between
• Suppose DM offered choice between

 – £1 million for sure (A)
• Suppose DM offered choice between

 – £1 million for sure (A)

and
Suppose DM offered choice between

- £1 million for sure (A)

and

- lottery

\[
\begin{array}{c}
\text{0.01} \downarrow \\
$1m \\
\text{0.89} \downarrow \\
$5m \\
\text{0.10} \downarrow
\end{array}
\]
• Suppose DM offered choice between

 – £1 million for sure (A)

and

 – lottery

 \[
 \begin{array}{c}
 \text{£5m} \\
 \text{£1m} \\
 0
 \end{array}
 \]

\[
\begin{array}{c}
\cdot10 \\
\cdot89 \\
\cdot01
\end{array}
\]

• most people choose A
• Now, suppose DM offered choice between

\[\begin{array}{c}
\text{.11} \\
\text{.89}
\end{array} \]

\[\begin{array}{c}
\text{£1m} \\
0
\end{array} \]

(C)
• Now, suppose DM offered choice between

\[\begin{array}{c}
\begin{array}{c}
\text{.11} \\
\text{.89}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\£1m \\
0
\end{array}
\end{array} \] (C)

and
• Now, suppose DM offered choice between

\[
\begin{array}{c}
\text{.11} & £1\text{m} \\
\text{.90} & 0 \quad (C)
\end{array}
\]

and

\[
\begin{array}{c}
\text{.10} & £5\text{m} \\
\text{.90} & 0 \quad (D)
\end{array}
\]
• Now, suppose DM offered choice between

\[\begin{array}{c}
\begin{array}{c}
\text{£1m} \\
0
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
.11 \\
.89
\end{array}
\end{array} \]

and

\[\begin{array}{c}
\begin{array}{c}
\text{£5m} \\
0
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
.10 \\
.90
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{(C)} \\
\text{(D)}
\end{array}
\end{array} \]

• most people choose D
• Now, suppose DM offered choice between

\[
\begin{align*}
 &0.11 \rightarrow \text{£1m} \rightarrow (C) \\
 &0.89 \rightarrow 0 \\
\end{align*}
\]

and

\[
\begin{align*}
 &0.10 \rightarrow \text{£5m} \rightarrow (D) \\
 &0.90 \rightarrow 0 \\
\end{align*}
\]

• most people choose D
• but choices A and D together violate EU!
• A can be rewritten as

\[
\begin{align*}
\text{\£1m} & \quad \text{.89} \\
\text{\£1m} & \quad \text{.71}
\end{align*}
\]
• A can be rewritten as

• B can be rewritten
• A can be rewritten as

• B can be rewritten

• but if $A \succ B$, then independence axiom implies
- A can be rewritten as
 \[\gamma \]

- B can be rewritten
 \[\gamma \]

- but if \(A \succ B \), then independence axiom implies
 \[\gamma \]

- so \(C \succ D \)
• So far, have been taking probabilities as “objective”
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)

• if buy a share of IBM
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)
• if buy a share of IBM
 – could go up by $10
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)
• if buy a share of IBM
 – could go up by $10
 – could go down by $7
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)
• if buy a share of IBM
 – could go up by $10
 – could go down by $7
 – could stay the same
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)
• if buy a share of IBM
 – could go up by $10
 – could go down by $7
 – could stay the same
 – probabilities of these events not “prescribed”-- they are subjective
• So far, have been taking probabilities as “objective”
 – but, in reality, usually are not (except in casinos, etc.)

• if buy a share of IBM
 – could go up by $10
 – could go down by $7
 – could stay the same
 – probabilities of these events not “prescribed”-- they are subjective

• Savage (1954) reformulates vN-M axioms so that apply to case of subjective probability
• Independence axiom becomes:
Independence axiom becomes:

- if $\ell \succeq \ell'$
• Independence axiom becomes:

- if $\ell \succeq \ell'$

- then for all events E and all $\hat{\ell}$
Proposition (Savage): if \succsim satisfies Savage’s axioms
Proposition (Savage): if \(\succeq \) satisfies Savage’s axioms

- then there exists a probability distribution \(p(\bullet) \) and utility function \(u : X \to \mathbb{R} \) such that
Proposition (Savage): if \succeq satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u : X \to \mathbb{R}$ such that
- $p(E) = $ DM’s probability of E, for all E
Proposition (Savage): if \succeq satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u : X \to \mathbb{R}$ such that
 - $p(E) = $ DM’s probability of E, for all E
 - $\ell \succeq \ell' \iff$
Proposition (Savage): if \succeq satisfies Savage’s axioms

- then there exists a probability distribution $p(\cdot)$ and utility function $u : X \to \mathbb{R}$ such that
 - $p(E) = \text{DM’s probability of } E$, for all E
 - $\ell \succeq \ell' \iff \sum_E p(E)u(x_{\ell E}) \geq \sum_E p(E)u(x_{\ell' E})$, for all E
Proposition (Savage): if \(\succsim \) satisfies Savage’s axioms

- then there exists a probability distribution \(p(\cdot) \) and utility function \(u : X \rightarrow \mathbb{R} \) such that
 - \(p(E) = \text{DM's probability of } E, \text{ for all } E \)
 - \(\ell \succsim \ell' \iff \sum_E p(E)u(x_{\ell E}) \geq \sum_E p(E)u(x_{\ell' E}) \),
 - where \(x_{\ell E} = \text{outcome of lottery } \ell \text{ in state } E \)
 - \(x_{\ell' E} = \text{outcome of lottery } \ell' \text{ in state } E \)
• Famous violation of Savage’s axioms due to D. Ellsberg
• Famous violation of Savage’s axioms due to D. Ellsberg
• same Ellsberg who leaked “Pentagon Paper” to press
Closed box containing 90 colored balls

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th></th>
<th>60</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td></td>
<td>black</td>
<td>yellow</td>
</tr>
<tr>
<td>ℓ_1</td>
<td>£100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ℓ_2</td>
<td>0</td>
<td>£100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ℓ_3</td>
<td>£100</td>
<td>0</td>
<td>£100</td>
<td></td>
</tr>
<tr>
<td>ℓ_4</td>
<td>0</td>
<td>£100</td>
<td>£100</td>
<td></td>
</tr>
</tbody>
</table>
Closed box containing 90 colored balls

<table>
<thead>
<tr>
<th></th>
<th>30 (red)</th>
<th>60 (yellow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_1</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>l_2</td>
<td>0</td>
<td>£100</td>
</tr>
<tr>
<td>l_3</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>l_4</td>
<td>0</td>
<td>£100</td>
</tr>
</tbody>
</table>

- most people prefer l_1 to l_2
Closed box containing 90 colored balls

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td>black</td>
</tr>
<tr>
<td>ℓ_1</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>ℓ_2</td>
<td>0</td>
<td>£100</td>
</tr>
<tr>
<td>ℓ_3</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>ℓ_4</td>
<td>0</td>
<td>£100</td>
</tr>
</tbody>
</table>

- most people prefer ℓ_1 to ℓ_2
- most people prefer ℓ_4 to ℓ_3
Closed box containing 90 colored balls

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td>black</td>
</tr>
<tr>
<td>l_1</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>l_2</td>
<td>0</td>
<td>£100</td>
</tr>
<tr>
<td>l_3</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>l_4</td>
<td>0</td>
<td>£100</td>
</tr>
</tbody>
</table>

- most people prefer l_1 to l_2
- most people prefer l_4 to l_3
- violates Savage
Closed box containing 90 colored balls

<table>
<thead>
<tr>
<th></th>
<th>red</th>
<th>black</th>
<th>yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1</td>
<td>£100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ℓ_2</td>
<td>0</td>
<td>£100</td>
<td>0</td>
</tr>
<tr>
<td>ℓ_3</td>
<td>£100</td>
<td>0</td>
<td>£100</td>
</tr>
<tr>
<td>ℓ_4</td>
<td>0</td>
<td>£100</td>
<td>£100</td>
</tr>
</tbody>
</table>

- most people prefer ℓ_1 to ℓ_2
- most people prefer ℓ_4 to ℓ_3
- violates Savage
 - $\ell_1 \succ \ell_2 \rightarrow p(\text{red}) > p(\text{black})$
Closed box containing 90 colored balls

<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th></th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td>black</td>
<td>yellow</td>
</tr>
<tr>
<td>(\ell_1)</td>
<td>(\£100)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\ell_2)</td>
<td>0</td>
<td>(\£100)</td>
<td>0</td>
</tr>
<tr>
<td>(\ell_3)</td>
<td>(\£100)</td>
<td>0</td>
<td>(\£100)</td>
</tr>
<tr>
<td>(\ell_4)</td>
<td>0</td>
<td>(\£100)</td>
<td>(\£100)</td>
</tr>
</tbody>
</table>

- most people prefer \(\ell_1\) to \(\ell_2\)
- most people prefer \(\ell_4\) to \(\ell_3\)
- violates Savage
 - \(\ell_1 \succ \ell_2 \rightarrow p(\text{red}) > p(\text{black})\)
 - \(\ell_4 \succ \ell_3 \rightarrow p(\text{black}) + p(\text{yellow}) > p(\text{red}) + p(\text{yellow})\)
Kahneman-Tversky (1981)
Kahneman-Tversky (1981)
• casts doubt on whether can represent lottery unambiguously as \(\ell = (p_1, \ldots, p_n) \)
600 citizens exposed to deadly disease
600 citizens exposed to deadly disease

- treatment A: saves 200 lives
600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:
600 citizens exposed to deadly disease

- **treatment A**: saves 200 lives
- **treatment B**:

 ![Diagram]

 - 1/3 saves 600 lives
 - 2/3 nobody saved

- most people choose A over B
600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:
 - 1/3: 600 saved
 - 2/3: nobody saved

 - most people choose A over B

- treatment C: 400 die
600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:
 - 1/3: 600 saved
 - 2/3: nobody saved

 - most people choose A over B

- treatment C: 400 die
- treatment D:
 - 1/3: nobody dies
 - 2/3
 - 1/3: nobody dies
 - 2/3: 600 die
600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:
 - 1/3: 600 saved
 - 2/3: nobody saved

 - most people choose A over B

- treatment C: 400 die

- treatment D:
 - 1/3: nobody dies
 - 2/3:
 - 1/3: nobody dies
 - 2/3: 600 die

 - most people choose D over C
600 citizens exposed to deadly disease

- treatment A: saves 200 lives
- treatment B:
 - most people choose A over B
- treatment C: 400 die
- treatment D:
 - most people choose D over C
- but A equivalent to C, B equivalent to D!
• Have shown you 3 “anomalies”
• Have shown you 3 “anomalies”
 – Allais
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky
• there are about 8 or 9 more
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky
• there are about 8 or 9 more
 – theoretical problem
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky
• there are about 8 or 9 more
 – theoretical problem
 – there is a model that accounts for each of the dozen problems
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky
• there are about 8 or 9 more
 – theoretical problem
 – there is a model that accounts for each of the dozen problems
 – but that means there are 12 models
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky

• there are about 8 or 9 more
 – theoretical problem
 – there is a model that accounts for each of the dozen problems
 – but that means there are 12 models

• by contrast in early days of decision theory, just one model
• Have shown you 3 “anomalies”
 – Allais
 – Ellsberg
 – Kahneman-Tversky
• there are about 8 or 9 more
 – theoretical problem
 – there is a model that accounts for each of the dozen problems
 – but that means there are 12 models
• by contrast in early days of decision theory, just one model
 – challenge: to unify the 12